Most transcluded pages
Jump to navigation
Jump to search
Showing below up to 50 results in range #1 to #50.
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)
- Lecture 11. A) Hypothesis Testing (used on 1 page)
- Lecture 12. J) Neyman-Pearson Lemma (used on 1 page)
- Lecture 15. B) Some Implications (used on 1 page)
- Lecture 18. A) Multicollinearity (used on 1 page)
- Lecture 4. H) Dirac delta function (used on 1 page)
- Lecture 8. B) Method of Moments (used on 1 page)
- Lecture 11. B) Testing Procedure (used on 1 page)
- Lecture 13. A) Test Optimality (cont.) (used on 1 page)
- Lecture 15. C) Example: Hypothesis Test (used on 1 page)
- Lecture 18. B) Partitioned Regression (used on 1 page)
- Lecture 5. A) Families of Distributions (used on 1 page)
- Lecture 8. C) Maximum Likelihood (used on 1 page)
- Lecture 11. C) Variation on a Theme (used on 1 page)
- Lecture 13. B) Example: Normal (used on 1 page)
- Lecture 15. D) Example: Exponential Distribution (used on 1 page)
- Lecture 18. C) Gauss-Markov Theorem (used on 1 page)
- Lecture 5. B) Chebychev's Inequality (used on 1 page)
- Lecture 9. A) Point Estimation (cont.) (used on 1 page)
- Lecture 11. D) Testing Errors (used on 1 page)
- Lecture 13. C) Karlin-Rubin Theorem (used on 1 page)
- Lecture 15. E) Multiple Parameters (used on 1 page)
- Lecture 2. A) Random Variables (cont.) (used on 1 page)
- Lecture 5. C) Multiple Random Variables (used on 1 page)
- Lecture 9. B) Evaluating Estimators (used on 1 page)
- Lecture 11. E) Power Function (used on 1 page)
- Lecture 13. D) 2-sided Tests and Unbiased Tests (used on 1 page)
- Lecture 16. A) Bayesian Inference (used on 1 page)
- Lecture 2. B) Leibniz Rule (used on 1 page)
- Lecture 6. A) Multiple Random Variables (cont.) (used on 1 page)
- Lecture 9. C) Minimum Variance Estimators (used on 1 page)
- Lecture 11. F) Example 1 (used on 1 page)
- Lecture 13. E) p-value (used on 1 page)
- Lecture 16. B) Example: Coin Tossing (used on 1 page)
- Lecture 2. C) Transformations of Random Variables (used on 1 page)
- Lecture 6. B) Conditional PMF/PDF (used on 1 page)
- Lecture 9. D) Sufficient Statistics (used on 1 page)
- Lecture 11. G) Setting the Critical Value (used on 1 page)
- Lecture 13. F) Some Notes (used on 1 page)
- Lecture 16. C) A More General Example (used on 1 page)
- Lecture 3. A) Expected Value (used on 1 page)
- Lecture 6. C) Conditional Moments (used on 1 page)
- Lecture 9. E) Rao-Blackwell (used on 1 page)
- Lecture 1. A) Sample Space (used on 1 page)
- Lecture 12. A) Statistical Tests (used on 1 page)
- Lecture 13. G) Interval Estimation/Confidence Intervals (used on 1 page)
- Lecture 16. D) Conjugate Priors (used on 1 page)
- Lecture 3. B) Moments (used on 1 page)
- Lecture 6. D) Law of Iterated Expectations (used on 1 page)
- Lecture 9. F) Factorization Theorem (used on 1 page)
- Lecture 1. B) Probability Function (used on 1 page)