Lecture 2. C) Transformations of Random Variables

From Significant Statistics
Jump to navigation Jump to search

Transformations of random variables

Suppose [math]Y=g\left(X\right)[/math], where [math]g:\mathbf{R}\rightarrow\mathbf{R}[/math] is a function and [math]X[/math] is an r.v. with cdf [math]F_{X}[/math].

Clearly, [math]Y[/math] is also a random variable. Its induced probability function is equal to [math]P_{Y}\left(\cdot\right)=P_{X}\circ g^{-1}[/math]. When [math]X[/math] is discrete, it is usually simple to obtain the distribution of [math]Y[/math]. This becomes more complicated in the continuous case.

We consider the cases of strictly monotone transformations here. When transformations are not strictly monotone, the same procedure applies in a piecewise fashion (i.e., one needs to apply it repeatedly to different monotone sections of the transformation).

Affine Transformations: CDF

  • Suppose [math]Y=g\left(X\right)=aX+b,a\gt 0,b\in\mathbf{R}[/math].

In order to deduce [math]F_{Y}[/math], we use the probability functions of [math]X[/math] and [math]Y[/math]. Notice first that [math]F_{Y}\left(y\right)=P\left(Y\leq y\right)[/math]. This probability statement can be used to relate the cdf of [math]Y[/math] to the cdf of [math]X[/math]:

[math]P\left(Y\leq y\right)=P\left(aX+b\leq y\right)=P\left(X\leq\frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right).[/math]

This is a very useful result: we have related the cdf of a transformed r.v. [math]Y[/math] to the cdf of the transformed variable [math]X[/math]. We have learned that the distribution of [math]Y[/math] is given by the distribution of [math]X[/math], evaluated at a transformed value of the function's argument.

  • Now, suppose [math]Y=aX+b[/math] where [math]a\lt 0[/math]. In this case, we obtain

[math]F_{Y}\left(y\right)=P\left(Y\leq y\right)=P\left(aX+b\leq y\right)=P\left(X\geq\frac{y-b}{a}\right)=1-P\left(X\leq\frac{y-b}{a}\right)=1-F_{X}\left(\frac{y-b}{a}\right)[/math].

Affine Transformations: PDF

  • Let [math]a\gt 0[/math] and [math]Y=aX+b[/math].

We know [math]F_{Y}\left(y\right)=F_{X}\left(\frac{y-b}{a}\right)[/math], and that [math]f_{Y}\left(y\right)=\frac{d}{dy}F_{Y}\left(y\right).[/math]

By applying Leibniz rule, we obtain

[math]f_{Y}\left(y\right)=\frac{d}{dy}F_{X}\left(\frac{y-b}{a}\right)=f_{X}\left(\frac{y-b}{a}\right)\frac{d}{dy}\frac{y-b}{a}=f_{X}\left(\frac{y-b}{a}\right)\frac{1}{a}[/math].

  • If, on the other hand, [math]a\lt 0[/math], we would have [math]F_{Y}\left(y\right)=1-F_{X}\left(\frac{y-b}{a}\right)[/math], and applying Leibniz rule yields [math]f_{Y}\left(y\right)=-f_{X}\left(\frac{y-b}{a}\right)\frac{1}{a}.[/math]

We can write down both of these cases simultaneously, as

[math]f_{Y}\left(y\right)=f_{X}\left(\frac{y-b}{a}\right)\left|\frac{1}{a}\right|[/math], when [math]Y=aX+b[/math] and [math]a\neq 0[/math].

In general, as long as the transformation [math]Y=g\left(X\right)[/math] is monotonic, then

[math]f_{Y}\left(y\right)=f_{X}\left(g^{-1}\left(y\right)\right)\left|\frac{d}{dy}g^{-1}\left(y\right)\right|.[/math]

When it is not, then one can simply apply the formula separately for each monotonic region.

Also, notice that the role of [math]g^{-1}\left(y\right)[/math] is to ensure that the result is expressed as a function of the argument of interest, [math]y[/math], rather than [math]x[/math].

There also exists a formula for transformations of multiple random variables. In this case, rather than multiplying the pdf by a single derivative, one uses the absolute value of the determinant of the Jacobian matrix of the transformations.