Uncategorized pages

Jump to navigation Jump to search

Showing below up to 50 results in range #51 to #100.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

  1. Lecture 13. F) Some Notes
  2. Lecture 13. G) Interval Estimation/Confidence Intervals
  3. Lecture 14. A) Convergence
  4. Lecture 14. B) Law of Large Numbers
  5. Lecture 14. C) Convergence in Distribution
  6. Lecture 14. D) Slutsky’s Theorem
  7. Lecture 14. E) Central Limit Theorem
  8. Lecture 14. F) Delta Method
  9. Lecture 14. G) Somewhat Pedantic Remark on Notation
  10. Lecture 15. A) Asymptotic Properties of ML Estimators
  11. Lecture 15. B) Some Implications
  12. Lecture 15. C) Example: Hypothesis Test
  13. Lecture 15. D) Example: Exponential Distribution
  14. Lecture 15. E) Multiple Parameters
  15. Lecture 16. A) Bayesian Inference
  16. Lecture 16. B) Example: Coin Tossing
  17. Lecture 16. C) A More General Example
  18. Lecture 16. D) Conjugate Priors
  19. Lecture 16. E) Normal Distribution
  20. Lecture 16. F) "Counterexample"
  21. Lecture 16. G) Multiple Observations
  22. Lecture 16. H) Theorem: Berstein von-Mises
  23. Lecture 17. A) Ordinary Least Squares
  24. Lecture 17. B) Normal Linear Model
  25. Lecture 17. C) Asymptotic Properties of OLS
  26. Lecture 17. D) Bootstrapping
  27. Lecture 18. A) Multicollinearity
  28. Lecture 18. B) Partitioned Regression
  29. Lecture 18. C) Gauss-Markov Theorem
  30. Lecture 2. A) Random Variables (cont.)
  31. Lecture 2. B) Leibniz Rule
  32. Lecture 2. B) Leibniz Rule II
  33. Lecture 2. C) Transformations of Random Variables
  34. Lecture 3. A) Expected Value
  35. Lecture 3. B) Moments
  36. Lecture 3. C) Moment Generating Function
  37. Lecture 4. A) Distributions
  38. Lecture 4. B) Bernoulli
  39. Lecture 4. C) Binomial
  40. Lecture 4. D) Poisson
  41. Lecture 4. E) Uniform
  42. Lecture 4. F) Gamma
  43. Lecture 4. G) Normal
  44. Lecture 4. H) Dirac delta function
  45. Lecture 5. A) Families of Distributions
  46. Lecture 5. B) Chebychev's Inequality
  47. Lecture 5. C) Multiple Random Variables
  48. Lecture 6. A) Multiple Random Variables (cont.)
  49. Lecture 6. B) Conditional PMF/PDF
  50. Lecture 6. C) Conditional Moments

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)