Most transcluded pages

Jump to navigation Jump to search

Showing below up to 47 results in range #51 to #97.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

  1. Lecture 12. D) Wald Test‏‎ (used on 1 page)
  2. Lecture 14. C) Convergence in Distribution‏‎ (used on 1 page)
  3. Lecture 16. G) Multiple Observations‏‎ (used on 1 page)
  4. Lecture 4. B) Bernoulli‏‎ (used on 1 page)
  5. Lecture 6. G) Some Inequalities‏‎ (used on 1 page)
  6. Lecture 1. E) More on Probability Functions‏‎ (used on 1 page)
  7. Lecture 12. E) Example: LRT‏‎ (used on 1 page)
  8. Lecture 14. D) Slutsky’s Theorem‏‎ (used on 1 page)
  9. Lecture 16. H) Theorem: Berstein von-Mises‏‎ (used on 1 page)
  10. Lecture 4. C) Binomial‏‎ (used on 1 page)
  11. Lecture 7. A) Random Sample‏‎ (used on 1 page)
  12. Lecture 1. F) Random Variables‏‎ (used on 1 page)
  13. Lecture 12. F) Test Equivalence‏‎ (used on 1 page)
  14. Lecture 14. E) Central Limit Theorem‏‎ (used on 1 page)
  15. Lecture 17. A) Ordinary Least Squares‏‎ (used on 1 page)
  16. Lecture 4. D) Poisson‏‎ (used on 1 page)
  17. Lecture 7. B) Statistics‏‎ (used on 1 page)
  18. Lecture 10. A) Finding UMVU Estimators‏‎ (used on 1 page)
  19. Lecture 12. G) Equivalence Between LRT and LM Tests‏‎ (used on 1 page)
  20. Lecture 14. F) Delta Method‏‎ (used on 1 page)
  21. Lecture 17. B) Normal Linear Model‏‎ (used on 1 page)
  22. Lecture 4. E) Uniform‏‎ (used on 1 page)
  23. Lecture 7. C) Order Statistics‏‎ (used on 1 page)
  24. Lecture 10. B) Complete Statistic‏‎ (used on 1 page)
  25. Lecture 12. H) Equivalence Between LRT and Wald Tests‏‎ (used on 1 page)
  26. Lecture 14. G) Somewhat Pedantic Remark on Notation‏‎ (used on 1 page)
  27. Lecture 17. C) Asymptotic Properties of OLS‏‎ (used on 1 page)
  28. Lecture 4. F) Gamma‏‎ (used on 1 page)
  29. Lecture 7. D) Statistical Inference‏‎ (used on 1 page)
  30. Lecture 10. C) Cramer-Rao Lower Bound‏‎ (used on 1 page)
  31. Lecture 12. I) Optimal Tests‏‎ (used on 1 page)
  32. Lecture 15. A) Asymptotic Properties of ML Estimators‏‎ (used on 1 page)
  33. Lecture 17. D) Bootstrapping‏‎ (used on 1 page)
  34. Lecture 4. G) Normal‏‎ (used on 1 page)
  35. Lecture 8. A) Point Estimation‏‎ (used on 1 page)
  36. Lecture 11. A) Hypothesis Testing‏‎ (used on 1 page)
  37. Lecture 12. J) Neyman-Pearson Lemma‏‎ (used on 1 page)
  38. Lecture 15. B) Some Implications‏‎ (used on 1 page)
  39. Lecture 18. A) Multicollinearity‏‎ (used on 1 page)
  40. Lecture 4. H) Dirac delta function‏‎ (used on 1 page)
  41. Lecture 8. B) Method of Moments‏‎ (used on 1 page)
  42. Lecture 11. B) Testing Procedure‏‎ (used on 1 page)
  43. Lecture 13. A) Test Optimality (cont.)‏‎ (used on 1 page)
  44. Lecture 15. C) Example: Hypothesis Test‏‎ (used on 1 page)
  45. Lecture 18. B) Partitioned Regression‏‎ (used on 1 page)
  46. Lecture 5. A) Families of Distributions‏‎ (used on 1 page)
  47. Lecture 8. C) Maximum Likelihood‏‎ (used on 1 page)

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)