Oldest pages
Jump to navigation
Jump to search
Showing below up to 50 results in range #51 to #100.
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)
- Lecture 1. A) Sample Space (02:30, 24 September 2019)
- Lecture 2. A) Random Variables (cont.) (16:55, 24 September 2019)
- Lecture 2. B) Leibniz Rule (17:02, 24 September 2019)
- Lecture 2. C) Transformations of Random Variables (17:08, 24 September 2019)
- Lecture 1. E) More on Probability Functions (23:56, 25 September 2019)
- Lecture 1. F) Random Variables (00:01, 26 September 2019)
- Lecture 3. A) Expected Value (18:51, 30 September 2019)
- Lecture 3. C) Moment Generating Function (19:15, 30 September 2019)
- Lecture 4. C) Binomial (00:20, 2 October 2019)
- Lecture 4. D) Poisson (00:22, 2 October 2019)
- Lecture 4. E) Uniform (00:23, 2 October 2019)
- Lecture 4. H) Dirac delta function (01:21, 2 October 2019)
- Lecture 4. B) Bernoulli (18:12, 2 October 2019)
- Lecture 4. G) Normal (18:20, 2 October 2019)
- Lecture 4. F) Gamma (00:14, 3 October 2019)
- Lecture 5. A) Families of Distributions (18:21, 7 October 2019)
- Lecture 5. C) Multiple Random Variables (18:28, 7 October 2019)
- Lecture 6. B) Conditional PMF/PDF (14:20, 9 October 2019)
- Lecture 6. C) Conditional Moments (14:28, 9 October 2019)
- Lecture 6. D) Law of Iterated Expectations (14:31, 9 October 2019)
- Lecture 6. E) Conditional Variance Identity (14:32, 9 October 2019)
- Lecture 6. F) Covariance and Correlation (14:34, 9 October 2019)
- Lecture 6. A) Multiple Random Variables (cont.) (17:34, 10 October 2019)
- Lecture 6. G) Some Inequalities (17:56, 10 October 2019)
- Lecture 7. A) Random Sample (17:44, 14 October 2019)
- Lecture 7. B) Statistics (17:51, 14 October 2019)
- Lecture 7. C) Order Statistics (17:53, 14 October 2019)
- Lecture 8. A) Point Estimation (13:20, 16 October 2019)
- Lecture 8. B) Method of Moments (13:29, 16 October 2019)
- Lecture 8. C) Maximum Likelihood (13:32, 16 October 2019)
- Lecture 9. B) Evaluating Estimators (13:17, 21 October 2019)
- Lecture 9. C) Minimum Variance Estimators (13:18, 21 October 2019)
- Lecture 9. F) Factorization Theorem (13:48, 21 October 2019)
- Lecture 10. A) Finding UMVU Estimators (13:33, 28 October 2019)
- Lecture 10. B) Complete Statistic (16:11, 29 October 2019)
- Lecture 11. C) Variation on a Theme (13:30, 30 October 2019)
- Lecture 11. D) Testing Errors (13:35, 30 October 2019)
- Lecture 11. E) Power Function (13:36, 30 October 2019)
- Lecture 11. F) Example 1 (13:41, 30 October 2019)
- Lecture 12. D) Wald Test (13:46, 4 November 2019)
- Lecture 12. E) Example: LRT (13:55, 4 November 2019)
- Lecture 12. G) Equivalence Between LRT and LM Tests (13:59, 4 November 2019)
- Lecture 12. H) Equivalence Between LRT and Wald Tests (14:02, 4 November 2019)
- Lecture 12. J) Neyman-Pearson Lemma (14:15, 4 November 2019)
- Lecture 13. D) 2-sided Tests and Unbiased Tests (15:23, 11 November 2019)
- Lecture 13. F) Some Notes (15:55, 11 November 2019)
- Lecture 13. G) Interval Estimation/Confidence Intervals (16:03, 11 November 2019)
- Lecture 9. D) Sufficient Statistics (07:02, 12 November 2019)
- Lecture 13. B) Example: Normal (18:39, 12 November 2019)
- Lecture 13. E) p-value (18:42, 12 November 2019)