MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "lecontinue": "20190905234930|1036",
        "continue": "-||"
    },
    "query": {
        "logevents": [
            {
                "logid": 1046,
                "ns": 6,
                "title": "File:Jensen1.png",
                "pageid": 667,
                "logpage": 667,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Foojt",
                "timestamp": "2019-10-10T21:55:44Z",
                "comment": "Jensen's Inequality"
            },
            {
                "logid": 1045,
                "ns": 6,
                "title": "File:Jensen1.png",
                "pageid": 667,
                "logpage": 667,
                "params": {
                    "img_sha1": "sb2a76hdnw261yae2dfscx1r5698i1a",
                    "img_timestamp": "2019-10-10T21:55:44Z"
                },
                "type": "upload",
                "action": "upload",
                "user": "Foojt",
                "timestamp": "2019-10-10T21:55:44Z",
                "comment": "Jensen's Inequality"
            },
            {
                "logid": 1044,
                "ns": 6,
                "title": "File:Jensen.png",
                "pageid": 568,
                "logpage": 568,
                "params": {
                    "img_sha1": "sb2a76hdnw261yae2dfscx1r5698i1a",
                    "img_timestamp": "2019-10-10T21:54:45Z"
                },
                "type": "upload",
                "action": "overwrite",
                "user": "Foojt",
                "timestamp": "2019-10-10T21:54:45Z",
                "comment": ""
            },
            {
                "logid": 1043,
                "ns": 0,
                "title": "Main Page",
                "pageid": 0,
                "logpage": 1,
                "params": {},
                "type": "delete",
                "action": "delete",
                "user": "Foojt",
                "timestamp": "2019-09-06T20:01:04Z",
                "comment": "content was: \"==Grad-level Probability and Statistics Lecture Notes==   [[Lecture 1._A)_Sample_Space|Lecture 1: Probability Theory, Probability Space, Random Variables, Cumulative Distribution Function]]\""
            },
            {
                "logid": 1042,
                "ns": 0,
                "title": "Grad-level Probability and Statistics Lecture Notes",
                "pageid": 0,
                "logpage": 529,
                "params": {},
                "type": "delete",
                "action": "delete",
                "user": "Foojt",
                "timestamp": "2019-09-06T20:00:54Z",
                "comment": "content was: \"__NOTOC__  <div class=\"mainpage_row\"> <div class=\"mainpage_box\"> <table cellspacing=\"0\">   <tr>     <td rowspan=\"2\"><font size=\"40\" face=\"ar...\", and the only contributor was \"[[Special:Contributions/Foojt|Foojt]]\" ([[User talk:Foojt|talk]])"
            },
            {
                "logid": 1041,
                "ns": 0,
                "title": "Graduate Level: Intro to Probability and Statistics",
                "pageid": 666,
                "logpage": 666,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Foojt",
                "timestamp": "2019-09-06T19:57:12Z",
                "comment": "Created page with \"__NOTOC__  = Lecture Notes = <div class=\"mainpage_row\"> <div class=\"mainpage_box\"> <table cellspacing=\"0\">   <tr>     <td rowspan=\"2\"><font size=\"40\" face=\"arial\">01</font></t...\""
            },
            {
                "logid": 1040,
                "ns": 0,
                "title": "Full Lecture 18",
                "pageid": 665,
                "logpage": 665,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Foojt",
                "timestamp": "2019-09-06T18:11:58Z",
                "comment": "Created page with \"{{#lst:Lecture 18. A) Multicollinearity|section1}} {{#lst:Lecture 18. B) Partitioned Regression|section1}} {{#lst:Lecture 18. C) Gauss-Markov Theorem|section1}}\""
            },
            {
                "logid": 1039,
                "ns": 0,
                "title": "Full Lecture 17",
                "pageid": 664,
                "logpage": 664,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Foojt",
                "timestamp": "2019-09-06T18:09:24Z",
                "comment": "Created page with \"= Lecture 17 =  {{#lst:Lecture 17. A) Ordinary Least Squares|section1}} {{#lst:Lecture 17. B) Normal Linear Model|section1}} {{#lst:Lecture 17. C) Asymptotic Properties of OLS...\""
            },
            {
                "logid": 1038,
                "ns": 0,
                "title": "Lecture 18. C) Gauss-Markov Theorem",
                "pageid": 663,
                "logpage": 663,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Foojt",
                "timestamp": "2019-09-05T23:52:11Z",
                "comment": "Created page with \"= Gauss-Markov Theorem =  The Gauss Markov theorem is an important result for the OLS estimator. It does not depend on asymptotics or normality assumptions. It states that, in...\""
            },
            {
                "logid": 1037,
                "ns": 0,
                "title": "Lecture 18. B) Partitioned Regression",
                "pageid": 662,
                "logpage": 662,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Foojt",
                "timestamp": "2019-09-05T23:50:50Z",
                "comment": "Created page with \"= Partitioned Regression =  Partitioned regression is a method to understand how some parameters in OLS depend on others. Consider the decomposition of the linear regression e...\""
            }
        ]
    }
}